
MECE E3028 Mechanical Engineering Laboratory II
Professor Qiao Lin

Spring 2022

Experiment E6: Raspberry Pi Object Tracking

LABORATORY REPORT

Lab Group 12

Axel Ortega

Bruno Rergis

Anton Deti

Arlene Diaz

Christine Zou

Ashton Buchanan

Samuel Adeniyi

Columbia University
Department of Mechanical Engineering

February 16, 2022

Contents

Abstract 2

List of Figures 2

List of Tables 2

1 Introduction 3

2 Theory 3
2.1 RGB and HSV Color Spaces . 3
2.2 PID Closed-Loop Control System . 4
2.3 Servo Motors . 5
2.4 Basics of Raspberry Pi . 6
2.5 Arduino vs. Raspberry Pi . 7

3 Apparatus and Approach 8
3.1 Apparatus . 8
3.2 Approach . 8

4 Results and Discussion 10
4.1 Ball Color Identification and Static Tracking 11
4.2 Ball Tracking with Enabled Motor . 12
4.3 Troubleshooting . 13
4.4 Future Improvements . 14

5 Conclusion 14

References 15

A Appendix 16

1

Abstract

From human-computer interaction to visual surveillance, object tracking methods has in-
creasingly led to rapid development of deep learning over the last few years. This experiment
explores two single-object tracking algorithms. Three main programs are executed: a static
tracking system that recognizes single-object color profiles, a static tracking algorithm that
tracks an object’s center using a moving, defined frame, and a dynamic tracking algorithm
that attempts to maintain an object’s center in the center of the camera’s frame using a
servo assembly. Color ranges that could be used to track a red ball and a green ball were
identified; the static tracking program was successfully executed using these color ranges;
and the dynamic tracking program was successfully implemented by modifying a program
used to identify faces and by re-using the key components of the static ball-tracking program.
The results demonstrate the power of microcontrollers and demonstrate the effectiveness of
implementing computer vision in industry.

List of Figures

1 HSV Color Space Cylinder . 4
2 PID Control System Diagram . 5
3 Diagram of servo encoder components. 6
4 Diagram of servo potentiometer. 6
5 Raspberry Pi Model 4. 7
6 Assembled Raspberry Pi Kit. 8
7 Tracking of a green object. 11
8 Tracking of a red object. 11
9 Camera tracking ball’s center on a frame. 11

List of Tables

1 PID Gains . 13

2

1 Introduction

Object tracking is an important task when it comes to computer practices that deal with
vision. It is a fundamental application and is widely used in the traffic control field as well as
military and driver assistance systems. However, there are many different devices that vary
in cost, size, time-processing, power consumption, and other imperfections that continue to
produce research in this field. The motivation behind this experiment is to learn more about
Raspberry Pi and its applications in object work tracking processes.

The objective of this experiment is to implement an object tracking algorithm using a
Raspberry Pi Model 4 and a 2-degree-of-freedom camera mount system. The Raspberry Pi is
configured by downloading Raspbian operational software, installing and running programs
using Linux and the operating system’s terminal, and programming the object tracking al-
gorithm in Python. This also requires enabling the Raspberry Pi camera module. This
object tracking algorithm works in conjunction with a camera mount system, which is as-
sembled using a camera and a motor. The object tracking algorithm is then adapted to
track circular disks of varying colors, paths, and trajectories. To improve the accuracy of
the tracking, an Open Source Computer Vision (OpenCV) library for data image processing
is implemented to convert the images of the circular disks from an RGB color space to an
HSV (hue-saturation-value) grayscale color space as a color filter. When using the camera
mount system, the position of the object in this experiment is tracked using a Proportional-
Integral-Derivative (PID) control system.

2 Theory

2.1 RGB and HSV Color Spaces

An RGB (red-green-blue) color space is a light-based, additive color space based on the RGB
color model (1). This model combines primary colors red, green, and blue in various ways to
reproduce a broad array of colors. HSV is an alternative representation of the RGB model.
As shown in Figure 2 below, the HSV color space is a cylindrical color model that remaps
this RGB model into dimensions that are easier for the human eye to interpret (2). The
angular dimension in the cylinder denotes Hue, which specifies the angle of the color on the
RGB color circle. At 0◦ hue maps red, 120◦ maps green, and 240◦ maps blue. Saturation,
which can be seen in the horizontal dimension, controls the amount of color used (2). This
can also be thought of as the amount of gray in a color and ranges from 0 to 100. Lowering
this component to 0 introduces more gray into the color, whereas increasing to 100 displays
the primary color (2). Finally there is value which represents the brightness of the color (2).
This parameter is depicted by the vertical dimension in the HSV cylinder below and can
range from 0 to 100, where 0 is completely black and 100 is the brightest.

3

Figure 1: HSV Color Space Cylinder

An image in an RGB or an HSV space contains a collection of pixels which are arrays of
numbers(2). Generally, an image undergoing image processing with an OpenCV is charac-
terized by its number of channels, which is the dimension of the array each pixel is, and its
depth or maximum bit size of the number stored in the array(2). For an image in RGB or
HSV, each pixel contains 3 values where each value ranges from 0 to 255. They both have a
depth of 8 bits and three channels(2).

In order to convert an image from an RGB color space to a HSV color space, the following
statements are adapted into Python script for this lab (2):

V = max(R,G,B) (1)

S =
max(R,G,B)−min(R,G,B)

min(R,G,B
(2)

where S=0 if V=0

H = 60×


0+(G−B)

∆
if max(R,G,B) = R

2+(B−R)
∆

if max(R,G,B) = G
4+(R−G)

∆
if max(R,G,B) = B

(3)

∆ = max(R,G,B)−min(R,G,B) (4)

H = H + 360◦if H < 0 (5)

2.2 PID Closed-Loop Control System

A proportional-integral-derivative (PID) controller is a closed-loop control mechanism that
provides feedback to a system in order to maintain control on process variables in an ex-
periment such as pressure, temperature, level, and flow rate (3). This system continuously
calculates an error term as the difference between a desired state and a measured process
variable (PV) and applies a correction based on proportional, integral, and derivative terms
(2). Figure 2 below illustrates this process.

4

Figure 2: PID Control System Diagram

The system is given a desired value for a process variable, and at any moment within
the loop, the difference between the process variable and desired state is used by the control
system algorithm to find the desired actuator output that will drive the system (3). The
proportional component of the controller depends on an error term, which is the difference
between the desired value and the process variable (2). The integral component sums the
error term over time. This component will continuously increase until the steady-state error is
driven to zero (3). This steady-state error is simply the final difference between the desired
value and the process value The derivative component reduces the output if the process
variable or measuring element is increasing quickly(3). All these responses work jointly to
minimize the amount of error in a system. For this experiment, a PID control system will
be implemented in the object tracking algorithm to compensate the error in tracking the
positions of the circular disks.

2.3 Servo Motors

A servo motor is an electrical device available in Alternating Current (AC) and Direct
Current (DC) configurations that rotates parts of a machine. The motor is coupled with an
encoder, potentiometer, and a control circuit (4). It utilizes the PID closed-loop system and
provides torque and velocity as commanded from the PID controller. For this experiment,
two DC motors are used. They contain gear heads for optimum speed and torque and
position sensors which utilize the encoder and potentiometer mechanisms from Figures 3
and 4 (2).

5

Figure 3: Diagram of servo encoder com-
ponents.

Figure 4: Diagram of servo potentiome-
ter.

The encoder component converts a mechanical input into an electrical impulse that is
then transmitted as a signal through a wire(5). This determines the movement of the shaft
on the motor(4). The servos are commanded to move according to the positions specified
in the tracking algorithm, specifically the PID portion of the program. The potentiometer
component in the motor acts as a variable resistor. In the context of the motor, this means
that as it rotates, the potentiometer’s resistance changes, so the control circuit can dictate
the amount of movement and direction (4).

2.4 Basics of Raspberry Pi

The Raspberry Pi is a single printed-circuit-board (PCB) computer that can be connected
to a monitor, keyboard, and mouse to function like a desktop computer. The Raspberry Pi
computer was developed in 2012 by the Raspberry Pi Foundation to promote basic computer
science in developing countries. Since then, the computer has became very popular and
there have been upgrades to the system. Python-based libraries and other support systems
make it easier for students and engineers to implement mechatronics and other engineering
systems using the Raspberry Pi. The computer model has a large online community that
makes finding information about the computer very easy by using platforms such as: the
Raspberry Pi website, GitHub, YouTube, and other online forums.

6

Figure 5: Raspberry Pi Model 4.

As shown in Figure 5, the Raspberry Pi board is a small computer composed of general
purpose input-output pins (GPIO), a central processing unit (CPU), random access mem-
ory (RAM), a camera connection, a microSD card slot or memory slot, four USB ports, a
microHDMI port, and an Ethernet(2).

2.5 Arduino vs. Raspberry Pi

The Raspberry Pi often gets compared to Arduino when it comes to various electronics
projects. However, the biggest difference between the two is that an Arduino is a micro-
controller whereas the Raspberry Pi is a microprocessor that acts as a computer. For the
Arduino, it only contains the CPU, RAM, and ROM. However, the Raspberry Pi has all
of that in addition to a processor, memory, storage, graphics driver, and connectors on
the board. Because of its processor, it is able to run multiple tasks at once in contrast to
the Arduino which is typically used only for running a single task (6). The difference in
computational power leads to the higher price to purchase a Raspberry Pi.

Because the Arduino is a microcontroller, it does not require an operating system to run,
only the binary of a source code, whereas the Raspberry Pi has its own operating system,
Raspberry Pi OS, in order to run. The Raspberry Pi has a significantly more powerful CPU
compared to an Arduino. However, because the Raspberry Pi requires an OS as well, it
requires more power to run than an Arduino (7). In general, the hardware and firmware for
a Raspberry Pi is also closed-source, but has always been open-source for Arduino.

Ultimately the Arduino is best for doing simple or repetitive tasks such as reading sensors
or switching something on/off, while the Raspberry Pi is better for complicated tasks such
as driving robots or controlling cameras (6).

7

3 Apparatus and Approach

The equipment that is used in the experiment include a Raspberry Pi Model 4, a Pan-Tilt
HAT Servo Motor Assembly, and an Aokin Raspberry Pi Camera Module. This hardware is
supplemented by the use of OpenCV within the Raspbian OS to program the ball-tracking
algorithm.

3.1 Apparatus

For this experiment, all necessary parts will be provided. Within the Raspberry Pi System,
there is the Raspberry Pi Model 4 microcontroller, with 2 GB of RAM allowing for frame-
by-frame image processing. This microcontroller includes a microSD card as it uses flash
memory to store all files, programs, etc. It also includes numerous cables, ports, and pins that
allow the board to be connected to other devices as seen in Fig. 6. This board is attached
to a camera mount system, consisting of a Pan-Tilt HAT kit and camera support system
(camera system must be enabled before it can be used). The board will then be connected
to a keyboard, mouse, and HDMI compatible monitor. The fully assembled Raspberry Pi
System will then be connected to a monitor. With a fully assembled Raspberry Pi System,
an enabled camera, and all necessary programs available for the system’s functionality, data
will be able to be collected.

Figure 6: Assembled Raspberry Pi Kit.

3.2 Approach

As stated, there are several software programs that must be installed to perform the experi-
ment. First, on a personal computer, install a version of the operating system recommended
by Raspberry Pi manufacturers; for this experiment, Raspbian BusterOS was chosen. The
provided microSD card must be flashed with the Rapsbian BusterOS. To insert the microSD
into a computer, a microSD-SD card adapter and/or a SD-USB adapter may be necessary.

8

Then to flash the microSD with the BusterOS, the balenaEtcher software can be used. Al-
ternatively, the Raspberry Pi Imager can be downloaded onto a personal computer. The
Raspberry Pi Imager can then be used to select the BusterOS and then directly flash to the
microSD card, completely circumventing the need for balenaEtcher.

With the microSD card prepared with a Raspberry Pi operating system, it can then be
inserted into the Raspberry Pi and the Raspberry Pi can then be turned on. Successful
operation of the Raspberry Pi depends on the use of peripherals such as a USB mouse, a
USB keyboard, and a monitor. From here, the majority of the experiment must be done via
a terminal or via a Python IDE.

Once the Raspberry Pi has been powered on and is connected to the appropriate periph-
erals, the camera module must first be enabled. To do so, in a terminal “sudo raspi-config”
must first be inputted, so that the filesystem expands. Then under “Interfacing Options” the
camera module can be enabled, and the system will reboot. Next, follow the steps outlined
on this site to download and install OpenCV in order to work in a virtual environment (8).
The necessary commands to run in the Raspberry Pi terminal to successful virtual Python
environment to download specific versions of libraries and dependencies for the experiment
are:

sudo apt−get i n s t a l l bui ld−e s s e n t i a l cmake pkg−c on f i g
sudo apt−get update && sudo apt−get upgrade
sudo apt−get i n s t a l l l i b j p e g−dev l i b t i f f 5 −dev l i b j a s p e r −dev
l ibpng−dev
sudo apt−get i n s t a l l l ibavcodec−dev l ibavformat−dev
l i b sws ca l e−dev l i b v4 l−dev
sudo apt−get i n s t a l l l i bxv id co r e−dev l ibx264−dev
sudo apt−get i n s t a l l l i b f o n t c on f i g 1 −dev l i b c a i r o 2 −dev
sudo apt−get i n s t a l l l ibgdk−pixbuf2 .0−dev l ibpango1 .0−dev
sudo apt−get i n s t a l l l i b g t k 2 .0−dev l ibg tk −3−dev
sudo apt−get i n s t a l l l i b a t l a s −base−dev g f o r t r an
sudo apt−get i n s t a l l l i bhd f5−dev l ibhd f5−s e r i a l −dev l ibhd f5 −103
sudo apt−get i n s t a l l l i b q t gu i 4 l i bq twebk i t 4 l i bq t4−t e s t python3−pyqt5
sudo apt−get i n s t a l l python3−dev

Then, to create a virtual environment, the commands executed in the console are:

wget https : // boots t rap . pypa . i o / get−pip . py
sudo python get−pip . py
sudo python3 get−pip . py
sudo rm −r f ˜/ . cache /pip
sudo pip i n s t a l l v i r t ua l env v i r tua lenvwrapper
nano ˜/ . bashrc

At this point, the bashrc file will open in which you must add the following code to the
bottom of the file:

v i r tua l env and vi r tua lenvwrapper

9

https://www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-buster/

export WORKONHOME=$HOME/ . v i r t u a l e nv s
export VIRTUALENVWRAPPERPYTHON=/usr /bin /python3
source / usr / l o c a l / bin / v i r tua lenvwrapper . sh
source ˜/ . bashrc

Now a virtual environment may be created. In this case, the virtual environment will be
called cv:

mkvirtualenv cv −p python3 . 7

Finally, a few more necessary packages had to be installed for object tracking. Input
following lines of code into the terminal.

cd ˜/ . v i r t u a l e nv s /cv/ l i b /python3 .5/ s i t e−packages /
ln −s / usr / l i b /python3/ d i s t−packages /smbus . cpython−35m−arm−l inux−
gnueabihf . so smbus . so

Enable the camera again and then perform these next steps in terminal as well.

workon cv
pip i n s t a l l −−upgrade pip
pip i n s t a l l p an t i l t h a t
pip i n s t a l l imu t i l s
pip i n s t a l l numpy==1.21.0
pip i n s t a l l ” picamera [array] ”
pip i n s t a l l opencv−contr ib−python==4.1.0.25

With the Raspberry Pi setup and all necessary packages installed, programming for object
tracking can begin within the cv virtual environment on the Raspberry Pi. The first task
is to write a code to track a ball without the motion of pan tilt module. To do so, follow
the steps outlined here (9). A color filter is instantiated within this program to limit what
objects can and cannot be identified. By running the program, objects within the detection
range can be statically tracked by the camera as indicated by a moving frame that follows
the object as it moves.

The final objective was to modify a facial recognition algorithm within the cv virtual
environment using the initial ball-tracking program, to dynamically track an object’s center
on a frame with the pan-tilt hat assembly to physically track the object’s center. Two balls
of a distinct, uniform color were tracked in this manner by using the color filtering from
before. This link can be used as a resource for this step (10).

4 Results and Discussion

As a whole, the investigation into object tracking through the use of a Raspberry Pi was a
success. Both objectives - tracking without the motor and with the motor enabled - were
fulfilled. The first, running a program to track a moving object on screen without enabling
any motors, was achieved through the provided code. Through the use of specific HSV

10

https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
https://www.pyimagesearch.com/2019/04/01/pan-tilt-face-tracking-with-a-raspberry-pi-and-opencv/

values that were called upon in that code which filtered out unlike colors, the ability to
track specifically-colored objects was gained. The second portion - implementing a program
that moves the camera while tracking an object on screen - was also achieved. This was
successfully done via the modification of code to identify specific HSV bounds in frame and
enclose it with an identifying box as opposed to identifying faces; this was then linked to the
servo-motor assembly and the prepared programming through logic changes in the code to
enable the camera to move and successfully track the movement of colored balls, even when
the movement was jarring and at high-speed.

4.1 Ball Color Identification and Static Tracking

The first set of data collected was the upper and lower HSV-values that filter out colors that
were neither red nor green.

This was done by using the code, pyimagesresearch, to correctly identify a green and
red ball by executing the range-detector program to determine the upper and lower bound
of the red color spectrum. The program specifically displays a binary image of the image
that the camera gathers and filters out colors; colors that are within the range selected are
displayed as white and colors that are outside the range selected are displayed as black.
Adjustments were made to capture a slightly larger range of HSV values for both red and
green to prevent changes in the lighting and the background from affecting the detection of
the balls.

The HSV values selected to track the red ball were an HSV minimum of (0, 180, 70) and
an HSV maximum of (15, 255, 255). The HSV values selected to track the green ball were
an HSV minimum of (29, 86, 153) and an HSV maximum of (164, 255, 255). The filters
were applied in both the ball tracking.py program and in the modified objcenter.py program.
These programs can be found in the Appendix.

Figure 7: Tracking of a green
object.

Figure 8: Tracking of a red
object.

Figure 9: Camera tracking
ball’s center on a frame.

The program that was run such that static ball tracking was achieved - i.e. without

11

https://www.pyimagesearch.com/2018/09/26/install-opencv-4-on-your-raspberry-pi/

enabling motors - relied on the colors identified using the range-detector.py code. The
program that was executed was ball tracking.py. This program identified the ball and drew
a frame around the ball by using a color filter to sort out what objects to track. All the
results for static tracking that follow from the codes provided in the appendix are reasonable,
considering the code did a suitable job of identifying the green ball and tracking it while
on screen. The modification made to the original ball tracking code such that the bounds
of the HSV values reflect that of the color red also did a reasonable job of following a red
object across the frame. The use of the range-detector.py code in order to identify those
HSV values for the green and red balls allowed for a systemic way of determining the proper
values, and thus the code for ball tracking ran in a straightforward manner. Satisfactory
static tracking on screen was achieved for both green and red objects.

4.2 Ball Tracking with Enabled Motor

The dynamic tracking, which entailed maintaining the center of the camera’s frame on the
center of the ball, was a more involved process. The base code was the objcenter.py program
that was coded to interpret the camera module’s image, search for a human face, and then
return the coordinates of the center of the face. This program was modified to use a large
portion of the ball tracking.py program to return the center coordinates of a ball - and a
radius slightly larger than the ball - using the color filtering mentioned in the algorithm for
the static tracking. See Appendix for the full ball tracking.py program. This objcenter.py
program, in addition to a PID control law in PID.py, is instantiated in the main program
pan tilt tracking.py program - both programs are also present in the Appendix. By imple-
menting these changes to the code, in which instead of identifying the center of faces, the
objcenter.py program which is called upon by the main code pan tilt tracking.py identifies
the center of circular regions in the video feed of a specific HSV range that is chosen by the
programmer, as done in ball tracking.py, the pan tilt tracking.py program can then success-
fully track green and red balls using generic gains. The final change that was implemented
was to change the frame surrounding the ball to that of a circle to make full, accurate use
of the center coordinates and radius value returned by the objcenter.py program.

The PID gains, however, required significant tuning to accurately track the balls. The
tuning was performed for both the panning servo and the tilting servo by setting the Integral
and Derivative gains to 0 and slowly increasing the Proportional gain until large, slow motions
of the ball could be accurately tracked and just barely began oscillating; the gain was then
set to half the gain value that barely began oscillating. The Integral gain was subsequently
increased until the oscillations settled in approximately half a second. Finally, the Derivative
gain was increased in much smaller increments than the other gains until rapid, jolting
movements could be accurately tracked by the servos. The gains for both servos can be seen
in Table 1.

These changes in the PID controls were accurately reflected in the performance of the
pan-tilt assembly. Where initially the dynamic tracking of an object was delayed and the
movement of the object being tracked would instigate jerks and choppy responses from the
tracking apparatus. As the program continually failed to keep up with the movements of

12

the object, its error in trying to correct itself and maintain the logic in the algorithm was
demonstrated through its rapid movements. The adjustments of the PID controller mitigated
these responses. The PID controllers entire function is to work in a feedback loop to control
what is being output based on the difference between process variable and the desired state.
In this case these would equate to where the program believes the object to be and where
the object actually is, respectively. The mitigation of this error implies less rapid movements
and more measured responses to quickly moving objects that go out of frame.

Table 1: PID Gains

Proportional Integral Derivative
Pan 0.05 0.24 0.0025
Tilt 0.04 0.31 0.003

4.3 Troubleshooting

There were several glitches and issues faced during the demonstration of this experiment.
Most of the issues faced in setting up the experiment were from the Linux terminal.

While following the provided experimental procedures and tutorials to install an OpenCV,
several libraries were determined to be incompatible with each other or generally deprecated.
Release 3.7.0 of Python had to be used to construct the virtual environment in which the
programs would be implemented. The relevant libraries were thus rolled back to earlier
versions to be compatible with one another and to be compatible with Python 3.7.0. The
main issue with compatibility arose with the Python Numpy library. As mentioned at the
end of Subsection 3.2, version 4.1.0.25 was used in the experiment.

During the process of implementing the object tracking algorithm for an enabled motor,
the instructions were followed such that the program was able to successfully detect and
track a moving face. However, this program created rectangular enclosures on detected faces
as opposed to circular ones, which are required by this experiment. To modify the original
algorithm so that the camera would track circular objects, code was inserted directly into
the objcenter.py program. The majority of the objcenter.py was replaced with a portion of
the code from ball tracking.py; the Haar Cascade Classifier model for facial detection in the
objcenter.py class was replaced with code listed in Appendix A.

After incorporating this, the camera was able to detect a circular object of a specified color
and enclose it with a circle as opposed to a rectangle. Within the main pan tilt tracking.py
program, the coordinates returned by the modified objcenter.py program to create a circle
around the tracked ball was implemented with:

i f r e c t i s not None :
(x , y , r ad iu s) = r e c t

13

cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , i n t (rad iu s) ,
(0 , 255 , 0) , 2)

4.4 Future Improvements

To improve the experiment for future trials, the apparatus can be placed in a more con-
trolled environment. The camera would often track any object of a specified color from the
ball tracking.py rather than just the tennis ball. Performing the object tracking with a white
or plain background can ensure that only the ball gets detected. Additionally, modification
of the original instructions is required to successfully implement the virtual environments.
The original setup that guided this experiment was agnostic towards the exact version of
Python and its libraries that would work; the instructions were written in such a manner so
as to make one believe that the versions of Python and its libraries would not matter and
that they would immediately interface.

5 Conclusion

This experiment investigated the software and hardware involved in creating an apparatus
using Raspberry Pi to track objects of specific colors in a video frame. Computer vision
was used to track distinctly-colored balls as a demonstration of the possibilities of industry
applications. It also provided a functional understanding of how to implement object tracking
through a Raspberry Pi and test the coordination of motors using PID control to ensure the
camera smoothly follows a moving object.

The performance of ball tracking without the enabling of motors was a direct result
of the prepared program. Its functionality was satisfactory and only small adjustments in
the bounds of the HSV color identifiers were necessary to apply the program to different
colors. The performance of ball tracking with enabled motors also performed to reasonable
standards. The adjustments in programming such that the logic of the pan tilt tracking.py
code used HSV in relation to a circular image as an identifier rather than a pre-written
facial recognition algorithm to locate the center of an object of interest. This allowed for the
implementation of an algorithm that tracks objects out of frame and adjusts the camera to
follow and was further refined through the tuned PID gains.

14

References

[1] “Cmyk vs rgb: What color space should i work in?.”

[2] W. Dai and Q. Lin, “Raspberry pi object tracking experiment lecture,” 2022.

[3] “Pid theory explained.”

[4] “How servo motors work.”

[5] “The right encoder for a servo motor.”

[6] R. Teja, “What are the differences between raspberry pi and arduino?,” Apr 2021.

[7] L. Pounder, “Raspberry pi vs arduino: Which board is best?,” Jul 2020.

[8] A. Rosebrock, “Install opencv 4 on raspberry pi 4 and raspbian buster,” Sep 2019.

[9] A. Rosebrock, “Ball tracking with opencv,” Sep 2015.

[10] A. Rosebrock, “Pan/tilt face tracking with a raspberry pi and opencv,” Apr 2019.

Contributions by section:

• Abstract: Axel, Bruno

• Introduction: Ashton, Axel, Arlene

• Theory: Axel, Ashton, Arlene, Christine

• Apparatus and Approach: Bruno, Sam, Anton, Christine, Axel

• Results and Discussion: Bruno, Arlene, Anton, Ashton

• Conclusions: Christine, Bruno, Anton, Arlene, Axel, Sam, Ashton

• Appendix: Bruno

15

A Appendix

Equations (1) through (6) are from the ”Raspberry Pi Object Tracking Experiment” lab
lecture.

Code from range-detector.py, the Python program used to identify color ranges as filters
for static and dynamic camera tracking of differently colored balls:

#!/ usr / bin /env python
−∗− coding : utf−8 −∗−

USAGE: You need to s p e c i f y a f i l t e r and ” only one” image source
#
(python) range−de t e c t o r −− f i l t e r RGB −−image /path/ to / image . png
or
(python) range−de t e c t o r −− f i l t e r HSV −−webcam

import cv2
import argparse
from operator import xor

de f c a l l b a ck (va lue) :
pass

de f s e tup t r a ckba r s (r a n g e f i l t e r) :
cv2 . namedWindow(” Trackbars ” , 0)

f o r i in [”MIN” , ”MAX”] :
v = 0 i f i == ”MIN” e l s e 255

f o r j in r a n g e f i l t e r :
cv2 . createTrackbar (”% s %s” % (j , i) ,
”Trackbars ” , v , 255 , c a l l b a ck)

de f get arguments () :
ap = argparse . ArgumentParser ()
ap . add argument (’− f ’ , ’−− f i l t e r ’ , r equ i r ed=True ,

he lp=’Range f i l t e r . RGB or HSV’)
ap . add argument (’− i ’ , ’−−image ’ , r equ i r ed=False ,

he lp=’Path to the image ’)
ap . add argument (’−w’ , ’−−webcam ’ , r equ i r ed=False ,

16

help=’Use webcam ’ , a c t i on=’ s t o r e t r u e ’)
ap . add argument (’−p ’ , ’−−preview ’ , r equ i r ed=False ,

he lp=’Show a preview o f the image a f t e r
apply ing the mask ’ ,
a c t i on=’ s t o r e t r u e ’)

args = vars (ap . pa r s e a r g s ())

i f not xor (bool (args [’ image ’]) , bool (args [’ webcam ’])) :
ap . e r r o r (” Please s p e c i f y only one image source ”)

i f not args [’ f i l t e r ’] . upper () in [’RGB’ , ’HSV ’] :
ap . e r r o r (” Please spec i y a c o r r e c t f i l t e r . ”)

re turn args

de f g e t t r a c kba r va l u e s (r a n g e f i l t e r) :
va lue s = []

f o r i in [”MIN” , ”MAX”] :
f o r j in r a n g e f i l t e r :

v = cv2 . getTrackbarPos(”% s %s” % (j , i) , ”Trackbars ”)
va lue s . append (v)

re turn va lue s

de f main () :
a rgs = get arguments ()

r a n g e f i l t e r = args [’ f i l t e r ’] . upper ()

i f a rgs [’ image ’] :
image = cv2 . imread (args [’ image ’])

i f r a n g e f i l t e r == ’RGB’ :
f r ame to th r e sh = image . copy ()

e l s e :
f r ame to th r e sh = cv2 . cvtColor (image , cv2 .COLOR BGR2HSV)

e l s e :
camera = cv2 . VideoCapture (0)

17

s e tup t r a ckba r s (r a n g e f i l t e r)

whi l e True :
i f a rgs [’ webcam ’] :

ret , image = camera . read ()

i f not r e t :
break

i f r a n g e f i l t e r == ’RGB’ :
f r ame to th r e sh = image . copy ()

e l s e :
f r ame to th r e sh = cv2 . cvtColor (image , cv2 .COLOR BGR2HSV)

v1 min , v2 min , v3 min , v1 max , v2 max , v3 max =
ge t t r a c kba r va l u e s (r a n g e f i l t e r)

thresh = cv2 . inRange (f rame to thre sh ,
(v1 min , v2 min , v3 min) ,
(v1 max , v2 max , v3 max))

i f a rgs [’ preview ’] :
preview = cv2 . b i tw i s e and (image , image , mask=thresh)
cv2 . imshow(” Preview ” , preview)

e l s e :
cv2 . imshow(” Or i g i na l ” , image)
cv2 . imshow(”Thresh ” , thresh)

i f cv2 . waitKey (1) & 0xFF i s ord (’ q ’) :
break

i f name == ’ main ’ :
main ()

18

Code from ball tracking.py, the Python program used to statically track moving green and
red balls; to specify which ball color to track, HSV ranges were applied to greenLower and
greenUpper:

import the nece s sa ry packages
from c o l l e c t i o n s import deque
from imu t i l s . v ideo import VideoStream
import numpy as np
import argparse
import cv2
import imu t i l s
import time
cons t ruc t the argument parse and parse the arguments
ap = argparse . ArgumentParser ()
ap . add argument(”−v” , ”−−video ” ,

he lp=”path to the (op t i ona l) v ideo f i l e ”)
ap . add argument(”−b” , ”−−bu f f e r ” , type=int , d e f au l t =64,

he lp=”max bu f f e r s i z e ”)
args = vars (ap . pa r s e a r g s ())
de f i n e the lower and upper boundar ies o f the ” green ”
ba l l in the HSV co l o r space , then i n i t i a l i z e the
l i s t o f t racked po in t s
greenLower = (29 , 86 , 80)
greenUpper = (64 , 255 , 255)
pts = deque (maxlen=args [” bu f f e r ”])
i f a v ideo path was not suppl i ed , grab the r e f e r e n c e
to the webcam
i f not args . get (” v ideo ” , Fa l se) :

vs = VideoStream (s r c =0). s t a r t ()
otherwise , grab a r e f e r e n c e to the v ideo f i l e
e l s e :

vs = cv2 . VideoCapture (args [” v ideo ”])
al low the camera or v ideo f i l e to warm up
time . s l e e p (2 . 0)
keep loop ing
whi le True :

grab the cur rent frame
frame = vs . read ()
handle the frame from VideoCapture or VideoStream
frame = frame [1] i f a rgs . get (” v ideo ” , Fa l se) e l s e frame
i f we are viewing a video and we did not grab a frame ,
then we have reached the end o f the video
i f frame i s None :

19

break
r e s i z e the frame , b lur i t , and convert i t to the HSV
co l o r space
frame = imu t i l s . r e s i z e (frame , width=600)
b lur r ed = cv2 . GaussianBlur (frame , (11 , 11) , 0)
hsv = cv2 . cvtColor (b lurred , cv2 .COLOR BGR2HSV)
cons t ruc t a mask f o r the c o l o r ” green ” , then perform
a s e r i e s o f d i l a t i o n s and e r o s i o n s to remove any smal l
blobs l e f t in the mask
mask = cv2 . inRange (hsv , greenLower , greenUpper)
mask = cv2 . erode (mask , None , i t e r a t i o n s =2)
mask = cv2 . d i l a t e (mask , None , i t e r a t i o n s =2)
f i nd contours in the mask and i n i t i a l i z e the cur rent
(x , y) c en te r o f the b a l l
cnts = cv2 . f indContours (mask . copy () , cv2 .RETR EXTERNAL,

cv2 .CHAIN APPROX SIMPLE)
cnts = imu t i l s . g rab contours (cnts)
c en te r = None
only proceed i f at l e a s t one contour was found
i f l en (cnts) > 0 :

f i nd the l a r g e s t contour in the mask , then use
i t to compute the minimum enc l o s i n g c i r c l e and
cen t ro id
c = max(cnts , key=cv2 . contourArea)
((x , y) , r ad iu s) = cv2 . minEnc los ingCi rc l e (c)
M = cv2 . moments (c)
c en te r = (i n t (M[”m10”] / M[”m00”]) ,

i n t (M[”m01”] / M[”m00 ”]))
only proceed i f the rad iu s meets a minimum s i z e
i f r ad iu s > 10 :

draw the c i r c l e and cen t r o i d on the frame ,
then update the l i s t o f t racked po in t s
cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , i n t (rad iu s) ,

(0 , 255 , 255) , 2)
cv2 . c i r c l e (frame , center , 5 , (0 , 0 , 255) , −1)

update the po in t s queue
pts . append l e f t (c en t e r)
loop over the s e t o f t racked po in t s
f o r i in range (1 , l en (pts)) :

i f e i t h e r o f the tracked po in t s are None , i gno r e
them
i f pts [i − 1] i s None or pts [i] i s None :

20

cont inue
otherwise , compute the th i ckne s s o f the l i n e and
draw the connect ing l i n e s
th i c kne s s = in t (np . s q r t (args [” bu f f e r ”] / f l o a t (i + 1)) ∗2 . 5)
cv2 . l i n e (frame , pts [i − 1] , pts [i] , (0 , 0 , 255) , t h i c kne s s)

show the frame to our s c r e en
cv2 . imshow(”Frame” , frame)
key = cv2 . waitKey (1) & 0xFF
i f the ’q ’ key i s pressed , stop the loop
i f key == ord (”q ”) :

break
i f we are not us ing a video f i l e , stop the camera video stream
i f not args . get (” v ideo ” , Fa l se) :

vs . stop ()
otherwise , r e l e a s e the camera
e l s e :

vs . r e l e a s e ()
c l o s e a l l windows
cv2 . destroyAllWindows ()

21

Code from pid.py, the Python program used to instantiate a PID control system:

import time
c l a s s PID :

de f i n i t (s e l f , kP=1, kI=0, kD=0):
i n i t i a l i z e ga ins
s e l f . kP = kP
s e l f . kI = kI
s e l f . kD = kD

def i n i t i a l i z e (s e l f) :
i n t i a l i z e the cur r ent and prev ious time
s e l f . currTime = time . time ()
s e l f . prevTime = s e l f . currTime

i n i t i a l i z e the prev ious e r r o r
s e l f . prevError = 0

i n i t i a l i z e the term r e s u l t v a r i a b l e s
s e l f . cP = 0
s e l f . c I = 0
s e l f . cD = 0

de f update (s e l f , e r ro r , s l e e p =0.2) :
pause f o r a b i t
time . s l e e p (s l e e p)

grab the cur rent time and c a l c u l a t e de l t a time
s e l f . currTime = time . time ()
deltaTime = s e l f . currTime − s e l f . prevTime

de l t a e r r o r
de l t aEr ro r = e r r o r − s e l f . prevError

propo r t i ona l term
s e l f . cP = e r r o r

i n t e g r a l term
s e l f . c I += e r r o r ∗ deltaTime

de r i v a t i v e term and prevent d iv id e by zero
s e l f . cD = (de l t aEr ro r / deltaTime) i f
deltaTime > 0 e l s e 0

22

save prev ious time and e r r o r f o r the next update
s e l f . prevTime = s e l f . currTime
s e l f . prevError = e r r o r

sum the terms and return
re turn sum ([

s e l f . kP ∗ s e l f . cP ,
s e l f . kI ∗ s e l f . cI ,
s e l f . kD ∗ s e l f . cD])

23

Code from the modified objcenter.py Python program which was used to identify the center
of the ball and which returns the coordinates of the ball’s center and a radius that surrounds
the ball:

import nece s sa ry packages
import imu t i l s
import cv2

c l a s s ObjCenter :
de f i n i t (s e l f , frame , frameCenter) :

s e l f . frame = frame
s e l f . frameCenter = frameCenter

de f update (s e l f , frame , frameCenter) :

greenLower = (29 , 86 , 80)
greenUpper = (64 , 255 , 255)

b lur r ed = cv2 . GaussianBlur (frame , (11 , 11) , 0)
hsv = cv2 . cvtColor (b lurred , cv2 .COLOR BGR2HSV)
cons t ruc t a mask f o r the c o l o r ” green ” , then perform
a s e r i e s o f d i l a t i o n s and e r o s i o n s to remove any smal l
blobs l e f t in the mask
mask = cv2 . inRange (hsv , greenLower , greenUpper)
mask = cv2 . erode (mask , None , i t e r a t i o n s =2)
mask = cv2 . d i l a t e (mask , None , i t e r a t i o n s =2)
f i nd contours in the mask and i n i t i a l i z e the cur rent
(x , y) c en te r o f the b a l l
cnts = cv2 . f indContours (mask . copy () , cv2 .RETR EXTERNAL,

cv2 .CHAIN APPROX SIMPLE)
cnts = imu t i l s . g rab contours (cnts)
c en te r = None
only proceed i f at l e a s t one contour was found
i f l en (cnts) > 0 :

f i nd the l a r g e s t contour in the mask , then use
i t to compute the minimum enc l o s i n g c i r c l e and
cen t ro id
c = max(cnts , key=cv2 . contourArea)
((x , y) , r ad iu s) = cv2 . minEnc los ingCi rc l e (c)
M = cv2 . moments (c)
objx = in t (M[”m10”] / M[”m00”])
objy = in t (M[”m01”] / M[”m00”])
only proceed i f the rad iu s meets a minimum s i z e
i f r ad iu s > 10 :

24

draw the c i r c l e and cen t r o i d on the frame ,
then update the l i s t o f t racked po in t s
#cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , i n t (rad iu s) ,

#(0 , 255 , 255) , 2)
r e c t s = (objx , objy , r ad iu s)

re turn ((objx , objy) , r e c t s)

otherw i s e no f a c e s were found , so re turn the cent e r o f the
frame
return (frameCenter , None)

25

Code from the modified objcenter.py Python program that was not in the original objcen-
ter.py program:

greenLower = (29 , 86 , 80)
greenUpper = (64 , 255 , 255)
b lur r ed = cv2 . GaussianBlur (frame , (11 , 11) , 0)
hsv = cv2 . cvtColor (b lurred , cv2 .COLOR BGR2HSV)
cons t ruc t a mask f o r the c o l o r ” green ” , then perform
a s e r i e s o f d i l a t i o n s and e r o s i o n s to remove any smal l
blobs l e f t in the mask
mask = cv2 . inRange (hsv , greenLower , greenUpper)
mask = cv2 . erode (mask , None , i t e r a t i o n s =2)
mask = cv2 . d i l a t e (mask , None , i t e r a t i o n s =2)
f i nd contours in the mask and i n i t i a l i z e the cur r ent
(x , y) c en te r o f the b a l l
cnts = cv2 . f indContours (mask . copy () , cv2 .RETR EXTERNAL,

cv2 .CHAIN APPROX SIMPLE)
cnts = imu t i l s . g rab contours (cnts)
c en te r = None
only proceed i f at l e a s t one contour was found
i f l en (cnts) > 0 :

f i nd the l a r g e s t contour in the mask , then use
i t to compute the minimum enc l o s i n g c i r c l e and
cen t ro id
c = max(cnts , key=cv2 . contourArea)
((x , y) , r ad iu s) = cv2 . minEnc los ingCi rc l e (c)
M = cv2 . moments (c)
objx = in t (M[”m10”] / M[”m00”])
objy = in t (M[”m01”] / M[”m00”])
only proceed i f the rad iu s meets a minimum s i z e
i f r ad iu s > 10 :

draw the c i r c l e and cen t r o i d on the frame ,
then update the l i s t o f t racked po in t s
#cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , i n t (rad iu s) ,

#(0 , 255 , 255) , 2)
r e c t s = (objx , objy , r ad iu s)
re turn ((objx , objy) , r e c t s)

otherw i s e no f a c e s were found , so re turn the cent e r o f the
frame
return (frameCenter , None)

26

Code from pan tilt tracking.py Python program which was used to send commands to the
pan-tilt assembly to move the camera to track the camera using tuned PID gains:

USAGE
python p a n t i l t t r a c k i n g . py

import nece s sa ry packages
from mul t i p ro c e s s i ng import Manager
from mul t i p ro c e s s i ng import Process
from imu t i l s . v ideo import VideoStream
from pyimagesearch . ob j c en t e r import ObjCenter
from pyimagesearch . pid import PID
import pan t i l t h a t as pth
import argparse
import s i g n a l
import time
import sys
import cv2
import numpy as np

de f i n e the range f o r the motors
servoRange = (−90 , 90)

func t i on to handle keyboard i n t e r r up t
de f s i g n a l h and l e r (s i g , frame) :

pr in t a s t a tu s message
p r i n t (” [INFO] You pres sed ‘ c t r l + c ‘ ! Ex i t ing . . . ”)

d i s ab l e the s e rvo s
pth . s e rvo enab l e (1 , Fa l se)
pth . s e rvo enab l e (2 , Fa l se)

ex i t
sys . e x i t ()

de f ob j c en t e r (args , objX , objY , centerX , centerY) :
s i g n a l trap to handle keyboard i n t e r r up t
s i g n a l . s i g n a l (s i g n a l . SIGINT , s i g n a l h and l e r)

s t a r t the v ideo stream and wait f o r the camera to warm up
vs = VideoStream (usePiCamera=True) . s t a r t ()
time . s l e e p (2 . 0)

27

i n i t i a l i z e the ob j e c t c en t e r f i n d e r
obj = ObjCenter ((0 , 0) , (0 , 0))

loop i n d e f i n i t e l y
whi l e True :

grab the frame from the threaded video stream
and f l i p i t v e r t i c a l l y (s i n c e our camera
was ups ide down)
frame = vs . read ()
frame = cv2 . f l i p (frame , 0)

c a l c u l a t e the cen te r o f the frame as t h i s i s
where we w i l l t ry to keep the ob j e c t
(H, W) = frame . shape [: 2]
centerX . va lue = W // 2
centerY . va lue = H // 2

f ind the object ’ s l o c a t i o n
objectLoc = obj . update (frame ,
(centerX . value , centerY . va lue))
((objX . value , objY . va lue) , r e c t) = objectLoc

ext r a c t the bounding box and draw i t
i f r e c t i s not None :

(x , y , r ad iu s) = r e c t
cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , i n t (rad iu s) ,
(0 , 255 , 0) , 2)

d i sp l ay the frame to the s c r e en
cv2 . imshow(”Pan−Ti l t Face Tracking ” , frame)
cv2 . waitKey (1)

de f p i d p r o c e s s (output , p , i , d , objCoord , centerCoord) :
s i g n a l trap to handle keyboard i n t e r r up t
s i g n a l . s i g n a l (s i g n a l . SIGINT , s i g n a l h and l e r)

c r ea t e a PID and i n i t i a l i z e i t
p = PID(p . value , i . value , d . va lue)
p . i n i t i a l i z e ()

loop i n d e f i n i t e l y
whi l e True :

28

ca l c u l a t e the e r r o r
e r r o r = centerCoord . va lue − objCoord . va lue

update the value
output . va lue = p . update (e r r o r)

de f i n range (val , s t a r t , end) :
determine the input va l e i s in the supp l i ed range
re turn (va l >= s t a r t and va l <= end)

de f s e t s e r v o s (pan , t l t) :
s i g n a l trap to handle keyboard i n t e r r up t
s i g n a l . s i g n a l (s i g n a l . SIGINT , s i g n a l h and l e r)

loop i n d e f i n i t e l y
whi l e True :

the pan and t i l t ang l e s are r eve r s ed
panAngle = −1 ∗ pan . va lue
t l tAng l e = −1 ∗ t l t . va lue

i f the pan ang le i s with in the range , pan
i f i n range (panAngle , servoRange [0] , servoRange [1]) :

pth . pan (panAngle)

i f the t i l t ang le i s with in the range , t i l t
i f i n range (t l tAng le , servoRange [0] , servoRange [1]) :

pth . t i l t (t l tAng l e)

check to see i f t h i s i s the main body o f execut ion
i f name == ” main ” :

cons t ruc t the argument par s e r and parse the arguments
ap = argparse . ArgumentParser ()
ap . add argument(”−c ” , ”−−cascade ” , type=str , r equ i r ed=True ,

he lp=”path to input Haar cascade f o r f a c e de t e c t i on ”)
args = vars (ap . pa r s e a r g s ())

s t a r t a manager f o r managing process−s a f e v a r i a b l e s
with Manager () as manager :

enable the s e rvo s
pth . s e rvo enab l e (1 , True)
pth . s e rvo enab l e (2 , True)

29

se t i n t e g e r va lue s f o r the ob j e c t c en t e r
(x , y)− coo rd ina t e s
centerX = manager . Value (” i ” , 0)
centerY = manager . Value (” i ” , 0)

s e t i n t e g e r va lue s f o r the object ’ s
(x , y)− coo rd ina t e s
objX = manager . Value (” i ” , 0)
objY = manager . Value (” i ” , 0)

pan and t i l t va lue s w i l l be managed by independent PIDs
pan = manager . Value (” i ” , 0)
t l t = manager . Value (” i ” , 0)

s e t PID va lue s f o r panning
panP = manager . Value (” f ” , 0 . 05)
panI = manager . Value (” f ” , 0 . 24)
panD = manager . Value (” f ” , 0 . 0025)

se t PID va lue s f o r t i l t i n g
t i l t P = manager . Value (” f ” , 0 . 04)
t i l t I = manager . Value (” f ” , 0 . 31)
t i l tD = manager . Value (” f ” , 0 . 003)

we have 4 independent p r o c e s s e s
1 . ob jec tCenter − f i n d s / l o c a l i z e s the ob j e c t
2 . panning − PID con t r o l loop determines
panning ang le
3 . t i l t i n g − PID con t r o l loop determines
t i l t i n g ang le
4 . s e tSe rvo s − d r i v e s the s e rvo s to proper
ang l e s based on PID feedback
to keep ob j e c t in cent e r

processObjectCenter = Process (t a r g e t=ob j c en t e r ,
a rgs=(args , objX , objY , centerX , centerY))

processPanning = Process (t a r g e t=p id proce s s ,
a rgs=(pan , panP , panI , panD , objX , centerX))

p r o c e s sT i l t i n g = Process (t a r g e t=p id proce s s ,
a rgs=(t l t , t i l tP , t i l t I , t i l tD , objY , centerY))

p roce s sSe tSe rvo s = Process (t a r g e t=s e t s e r v o s ,
a rgs=(pan , t l t))

30

s t a r t a l l 4 p r o c e s s e s
processObjectCenter . s t a r t ()
processPanning . s t a r t ()
p r o c e s sT i l t i n g . s t a r t ()
p roce s sSe tSe rvo s . s t a r t ()

j o i n a l l 4 p r o c e s s e s
processObjectCenter . j o i n ()
processPanning . j o i n ()
p r o c e s sT i l t i n g . j o i n ()
p roce s sSe tSe rvo s . j o i n ()

d i s ab l e the s e rvo s
pth . s e rvo enab l e (1 , Fa l se)
pth . s e rvo enab l e (2 , Fa l se)

31

	Abstract
	List of Figures
	List of Tables
	Introduction
	Theory
	RGB and HSV Color Spaces
	PID Closed-Loop Control System
	Servo Motors
	Basics of Raspberry Pi
	Arduino vs. Raspberry Pi

	Apparatus and Approach
	Apparatus
	Approach

	Results and Discussion
	Ball Color Identification and Static Tracking
	Ball Tracking with Enabled Motor
	Troubleshooting
	Future Improvements

	Conclusion
	References
	Appendix

