Mitigating Climate Change with Energy Storage: Regeneration of Energy by Excess Motion

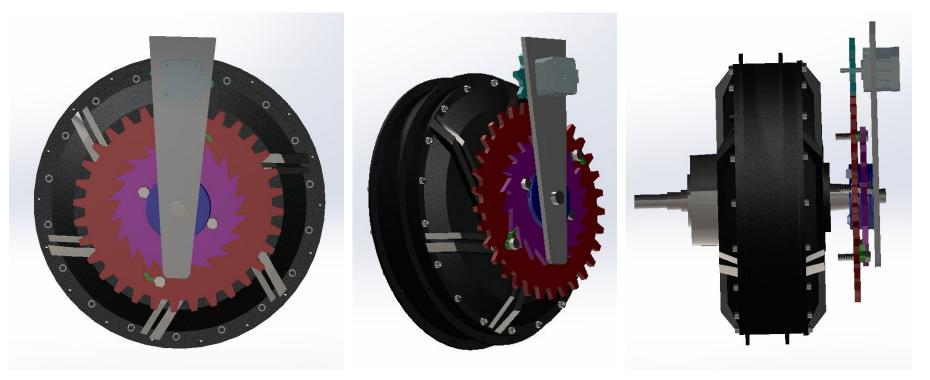
Group 2²

Mitigating Climate Change with Energy Storage: Regeneration of Energy by Excess Motion

Yi Qu SEAS Class of 2023 Biomedical Engineering

Yu-Chen Huang SEAS Class of 2023 CS / Mechanical Engineering

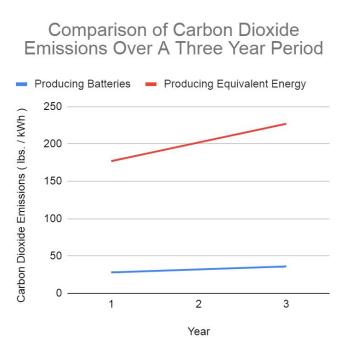
Axel Ivan Ortega SEAS Class of 2023 Major in Mechanical Engineering Minor in Hispanic Studies



Sanja Kirova SEAS Class of 2023 Mechanical Engineering

Group 2²

Minimum Viable Product



- Synthesis of two contemporary problems
 - Friction-based braking converts kinetic energy of wheels into thermal energy -"wasted" energy, excess motion
 - 2. Lack of reliable household energy in many developing countries

How does this mitigate climate change?

- Environmental impacts
 - Reduces reliance on wall outlets / traditional electricity production (often produced with nonrenewable resources)
 - Maximizes productivity of the electricity initially used to charge the electric bikes' batteries
- 1.00 lbs of CO₂ per kWh to produce our batteries
- 1.34 lbs of CO_2^{2} per kWh to produce the electrical energy

Year	Batteries In Use	Total kWh	CO ₂ pounds to produce batteries	CO₂ pounds to produce equivalen t energy	Reduction in CO ₂ pounds pounds
1	28	132	28	177	149
	million	million	million	million	million
2	32	151	32	202	168
	million	million	million	million	million
3	36	169	36	227	191
	million	million	million	million	million

Technical Description

Important specs

-

- Size: smaller than 9 inch radius (red gear) and 2.5 inch width (from direct drive motor to outermost shaft lock)
 - GR: 32:8 (red to light blue gear)
- **Cost:** ~\$75/assembly
- **Material:** 12V DC motor (1.5"x1.5"x1.25") (\$14), carbon steel 0.187" for gears (~\$12), washers/bolts (\$5), heavy duty springs (\$10)
 - Charging circuit: voltage control circuit
 - resistors, diodes, and cables (USB to portable battery) (~\$10)
- Portable Battery
 - Li-ion Battery (0.15 kWh): ~\$24 (~\$156/kWh, 2019)
 - Based on commercial portable chargers: 0.6 0.7lb, 10 12 cubic inches
- Viable given current technology readiness level
 - Widespread manufacturing of various models / sizes of portable chargers
 - Widespread manufacturing and distribution of electric bicycles, particularly in Asian countries like China
 - Extensive research already done to streamline the mass production of Li-ion batteries
 - Various mechanical brake assists and regenerative braking systems have already been implemented in both automobiles and electric bikes

Business Model / Sustainability

- Target market: Asia-Pacific region, especially East Asia / China
- Target customers: People who use electric bikes to commute to work on a regular basis and who either have unreliable household electricity or would like a portable source of power
 - Cost (\$75)

-

- Profitability viable due to expected demand which is helped by relatively affordable cost and marketable desirability
- Why will customers choose this over conventional methods?
 - Presents a convenient, affordable source of transportable back-up power which utilizes an everyday routine, i.e., transportation via. electric bicycle
 - Marketable as a sustainable investment, i.e., a means of obtaining "free power" from a routine these customers already have
 - Increased reliability of power in rural areas
 - Desirability of "modern," dual-purpose technologies

